https://www.thelocal.it/20170710/vatican-bans-gluten-free-bread-wine-doubtful-provenance-from-holy-communion-catholic-mass-eucharist
Suomen luterilaisessa kirkossa on mahdollsita saada ehtoollialeipä gluteenittomana ja ehkä viinikin alkoholittomana pyynnöstä.
Keliaakikon on kuitenkin syytä välttää liian tiheitä ehtoollisia, jos seurakunta jossa hän käy ehtoollisella,lla ei tunnsuta olevankaan tarvetta gluteenittomaan ehtoollisleipään.
vaikka samassa hengenvedossa kirkossa rukoillaan:
Anna meille meidän jokapäiväinen leipämme, siis meille individeille meidän individuellisti sovellutettu jokapäiväinen leipämme.
eikä esim "anna meille meidän pappimme jokapäiväinen leipä".
Toinen tapa millä voi alentaa gluteenialtistusta sakramenttiin osallistumisen frekvenssin vähentämisen ohella, lipämäärän vähentämisellä. Esim ison 8 keliakikon silmisäs jättimäisen gluteenipalan9 asemasta voi ottaa mikromurun, niin pinenn murun että se vain tarttuu sormenpäähän kiinni. siinä ei mahdu olemaan päivän sallitun gliadiinimäärän ylittävää gluteenimäärä.
Pitää selvittää, että hyvin tarkasti dieettiä noudattavillakin on lymfoomavaara 17 vuoden jälkeen, sillä T-solut rasittuvat ja voivat ottaa malignin linjan. Ne havaitsevat toksiset peptidit. Italiassa on paljon ongelmaa juuri siitä, että katolilaiset oat kuin miljoonat juutalaiset Auschwitsissa menevät apaattisesti kuooleman junaan vastustamatta pakkoa.
Kuolemaa tulee vastustaa.
Luonnollsiesti tietämättömyys on suuri este, siinä että tämä asia vielä sata vuotta sen jälkeen kun on alettu nähdä jotain elintarviketekijää , joka vaikuttaa terveyteen.
Tietysti pappien tahotla voi esittää puolustuksen: Eivät keliakikot kuitenkaan noudata mitään tarkkaa dieettiä, joten öylätin osuus kaikessa inkomplianssissa on statistisesti merkityksetön.
Mene ja tiedä! Se joka noudattaa huonosti dieettiä, tuskin välittää siitä onko öylätissä gluteenia vai ei, jos hän saattuu olemaan kristitty ja sattuu käymään ehtoollisella. Ja on uskon suuntia jotka puolustavat vehnäöylättiä Raamatun sanalla..
Jopa papit kuolevat keliakiaan ja sen komplikaatioihin ja siinä tapauksessa jopa muista nopeammin.
Toisalta keliakiian ja lymfoomaan kuolee myös niitä, jotka eivät edes käy ehtoollisella, joten ehtollissakramenttiin sinänsä liittyvät tervehdyttävät siunaukset ja niiden poisjääminen ovat uncertainty factor , kun asiaa punnitsee.
onsdag 26 juli 2017
tisdag 11 juli 2017
Mitä kansanvalistaja Wikipedia näistä polykombiproteiineista kertoo
Englanninkielestä selviää seuraavaa valoa:
PRC2 , polykombinen repressiivinen kompleksi on toinen polykombisen ryhmän proteiiniluokista 1 ja 2 .Tämän rymän toinen komponenti on PRC1, polykombinen repressiivinen kompleksi 1.
Mitä tällaiset proteiinit tekevät?
Tämä kompleksi PRC2 omaa histonimetyylitransferaasin kyvyt ja se pystyy trimetyloimaan H3- histonia aminohappoon lysiini, joka on peptidiketjun jäjestyksesä numero 27. eli lyhennyksenä on tuotetta H3K27me3 ( histoni 3, lysiini numero 27, metyyliryhmiä 3). Tällainen molekyylirakenne ilmoittaa, että kromatiini on transkriptionaalisesti hiljaisessa vaiheessa ( siitä siis ei kopioida koodeja sillä hetkellä: eli "Kopiokonetta printteriä ei käytetä").
https://en.wikipedia.org/wiki/SUZ12
PRC2 , polykombinen repressiivinen kompleksi on toinen polykombisen ryhmän proteiiniluokista 1 ja 2 .Tämän rymän toinen komponenti on PRC1, polykombinen repressiivinen kompleksi 1.
Mitä tällaiset proteiinit tekevät?
Tämä kompleksi PRC2 omaa histonimetyylitransferaasin kyvyt ja se pystyy trimetyloimaan H3- histonia aminohappoon lysiini, joka on peptidiketjun jäjestyksesä numero 27. eli lyhennyksenä on tuotetta H3K27me3 ( histoni 3, lysiini numero 27, metyyliryhmiä 3). Tällainen molekyylirakenne ilmoittaa, että kromatiini on transkriptionaalisesti hiljaisessa vaiheessa ( siitä siis ei kopioida koodeja sillä hetkellä: eli "Kopiokonetta printteriä ei käytetä").
- PRC2 (Polycomb Repressive Complex 2) is one of the two classes of polycomb-group proteins or (PcG). The other component of this group of proteins is PRC1 (Polycomb Repressive Complex 1).
- This complex has histone methyltransferase activity and primarily trimethylates histone H3 on lysine 27 (i.e. H3K27me3),[1][2] a mark of transcriptionally silent chromatin.
- PRC2 is required for initial targeting of genomic region (PRC Response Elements or PRE) to be silenced, while PRC1 is required for stabilizing this silencing and underlies cellular memory of silenced region after cellular differentiation.
- PRC1 also mono-ubiquitinates histone H2A on lysine 119 (H2AK119Ub1).
- These proteins are required for long term epigenetic silencing of chromatin and have an important role in stem cell differentiation and early embryonic development. PRC2 are present in all multicellular organisms.
https://en.wikipedia.org/wiki/SUZ12
- The mouse PRC2 has four subunits: Suz12 (zinc finger), Eed, Ezh1 or Ezh2 (SET domain with histone methyltransferase activity[1][2]) and RbAp48 (histone binding domain)
- PRC2 has a role in X chromosome inactivation, in maintenance of stem cell fate, and in imprinting. Aberrant expression of PRC2 has been observed in cancer.[1][2]
- The PRC2 is evolutionary conserved, and has been found in mammals, insects, and plants.
Käsite " polycomb group proteins"
Näyttää olevan kantasolututkimusaluetta.
Stem Cell Res. 2014 Jan;12(1):296-308. doi: 10.1016/j.scr.2013.11.007. Epub 2013 Nov 16.
Pluripotency factors and Polycomb Group proteins repress aryl hydrocarbon receptor expression in murine embryonic stem cells.
Abstract
The
aryl hydrocarbon receptor (AHR) is a transcription factor and
environmental sensor that regulates expression of genes involved in
drug-metabolism and cell cycle regulation.
Chromatin immunoprecipitation (ChIP) analyses, Ahr ablation in mice and studies with orthologous genes in invertebrates suggest that AHR may also play a significant role in embryonic development.
To address this hypothesis, we studied the regulation of Ahr expression in mouse embryonic stem cells (ESC) and their differentiated progeny. In ES cells, interactions between OCT3/4, NANOG, SOX2 and Polycomb Group (PcG) proteins at the Ahr promoter repress AHR expression, which can also be repressed by ectopic expression of reprogramming factors in hepatoma cells.
In ES cells, unproductive RNA polymerase II (RNAPII) binds at the Ahr transcription start site (TSS) and drives the synthesis of short abortive transcripts. Activation of Ahr expression during differentiation follows from reversal of repressive marks in Ahr promoter chromatin, release of pluripotency factors and PcG proteins, binding of Sp factors, establishment of histone marks of open chromatin, and engagement of active RNAPII to drive full-length RNA transcript elongation.
Our results suggest that reversible Ahr repression in ES cells holds the gene poised for expression and allows for a quick switch to activation during embryonic development.
Chromatin immunoprecipitation (ChIP) analyses, Ahr ablation in mice and studies with orthologous genes in invertebrates suggest that AHR may also play a significant role in embryonic development.
To address this hypothesis, we studied the regulation of Ahr expression in mouse embryonic stem cells (ESC) and their differentiated progeny. In ES cells, interactions between OCT3/4, NANOG, SOX2 and Polycomb Group (PcG) proteins at the Ahr promoter repress AHR expression, which can also be repressed by ectopic expression of reprogramming factors in hepatoma cells.
In ES cells, unproductive RNA polymerase II (RNAPII) binds at the Ahr transcription start site (TSS) and drives the synthesis of short abortive transcripts. Activation of Ahr expression during differentiation follows from reversal of repressive marks in Ahr promoter chromatin, release of pluripotency factors and PcG proteins, binding of Sp factors, establishment of histone marks of open chromatin, and engagement of active RNAPII to drive full-length RNA transcript elongation.
Our results suggest that reversible Ahr repression in ES cells holds the gene poised for expression and allows for a quick switch to activation during embryonic development.
Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
KEYWORDS:
AHR, aryl hydrocarbon receptor; ( transkriptiotekijä ja miljöösensori)ARNT; Ah receptor nuclear translocator;
AhRE,AHR response element;
CTD, carboxyl-terminal repeat domain;
ChIP, chromatin immunoprecipitation;
EB, embryoid bodies;
EMT, epithelial-to-mesenchymal transition;
ESC, embryonic stem cells;
EZH2, enhancer of zeste homolog 2;
H3K27ac; acetylated lysine-27 of histone H3;
H3K27me3/2/1, tri/di/mono-methylated lysine-27 of histone H3;
H3K36me3; tri-methylated lysine-36 of histone H3;
H3K4me3/2/, ;tri/di/mono-methylated lysine-4 of histone H3;
H3K9ac, acetylated lysine-9 of histone H3;
H3K9me3/2/1, tri/di/mono-methylated lysine-9 of histone H3
H3ac, acetylated histone H3;
HMT, histone methyltransferase;
ICMm inner-cell-mass;
KDM6A/B, lysine demethylase 6A and 6B;
KO, knock out;
MET, mesenchymal-to-epithelial transition;
MLL, myeloid/lymphoid or mix-lineage leukemia;
OCT3/4,
SOX2,
KLF4,
MYC;
OSKM;
PRC1/2, Polycomb repressive complexes 1 and 2;
PcG; Polycomb Group proteins;
RING1B, ring finger protein 1B;
RNAPII, RNA polymerase II;
RNAPII (S5p(+)S2p(+)), RNA polymerase II hyperphosphorylated in CTD serine-5 and serine-2;
RNAPII (S5p(+)S2p(−)), RNA polymerase II phosphorylated in CTD serine-5 but not serine-2;
SUZ12, suppressor of zeste 12 homolog;
TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin;
TES. transcription end site;
TSS, transcription start site;
TxG, Trithorax Group proteins;
bHLH/PAS, basic helix–loop–helix/Per-ARNT-Sim;
iPSC, induced pluripotent stem cells;
Kommentti: Otin tämäna rtikkelin sitaatina, näiden termisanojen takia, ksoka Suomen keliakiatutkimus on tällä tasolla asian syvillä juurilla ja näitä termejä käytetään. Jätetään tämä asia hautumaan. ja seurataan mitä tuloksia Tempereelta ilmenee.
Muistiin 11.7. 2017
Käynnissä olevia keliakiaa koskevia tutkimustöitä Tampereella
University of Tampere: Taculty of Medicine and Life Sciences:
The Research Council for Health of the Academy of Finland granted five-year research fellowships to project director Ilkka Junttila and university researcher Keijo Viiri from the University of Tampere. Twelve fellowships were granted to eighty-five applicants, i.e. to fourteen percent of the applicants.
http://www.uta.fi/tacc/research/signallingepigenetics/index.html
Information in the genome is written in the bases of DNA and misspellings (mutations) in this code have sometimes profound effects leading to diseases. Yet, genome is not a static entity where information is only stored but it needs mechanisms to regulate the usage of this information i.e. gene activation and repression. Scientific advances in couple of last decades have taught us that there is a rather plastic interface between genome and environment. These epigenetic mechanisms include DNA methylation and plethora of different histone modifications which in turn regulate gene expression and a given gene expression state is inherited to the daughter cells. Perturbations in epigenetic mechanisms can also contribute to diseases such as cancer. One epigenetic regulator called ‘Polycomb’ has been shown to be overexpressed in endometrial-, breast-, colon-, lung-, and skin cancer. Cell type specific expression programs are orchestrated through regulated access to chromatin. Polycomb proteins regulate developmental gene expression. Polycombs are essential for embryonic stem cell self-renewal and pluripotency but they are also necessary for the maintenance of cell identity and cell differentiation throughout life. It has been shown that overexpressed polycomb keeps cells in more proliferative and lower differentiation state, which inevitably is one of the hallmarks of cancer.
Reminiscent to hyper-proliferative state in cancer the main manifestation of Celiac disease is also more proliferative and lower differentiation state, namely of the epithelium of the small intestine leading to food malabsorption. We’ve found that polycomb maintains the homeostasis between intestinal stem cells and mature epithelium. Moreover this homeostasis is broken when celiac patients are on gluten containing diet.
As celiac disease is an ailment with the strong autoimmune component in its pathogenesis we strive to understand how intestinal barrier (epithelium, immune cells and lamina propria cells) is dysregulated in the disease. In our projects we use human and mouse primary cell cultures (intestinal organoids, primary myofibroblasts etc) and genome-wide techniques (such as ChIP-Seq) in endeavours to understand how signalling is reigned in intestinal barrier and how epigenetic mechanisms are running the errands of the signalling.
Figure 1. (A) Schematic representation of the role of Polycomb Repressive Complex 2 (PRC2) on enacting the Wnt/beta-catenin signaling and regulating the homeostasis of intestinal stem cell self-renewal and differentiation. At transit amplifying (TA) region PRC2 selectively set an epigenomic identity by labelling genes with repressive H3K27me3 mark and therefore enforce and maintain the dichotomy for crypt and villus identities. Scatter blot on the right demonstrates the genome-wide change in H3K27me3 occupancy during the differentiation of crypt/Intestinal stem cells to mature enterocytes. Blue dots represents all normalized differential H3K27me3 ChIP-Seq peaks near protein coding genes of the mouse genome (above genes silenced in crypts and below genes silenced in villi). Red coloured triangles denote the genes having significant gene expression difference measured by GRO-Seq and green arrows quantitatively illustrate the gene expression difference in enterocytes relative to crypts/ISCs (up=activation, down=repression). (B) PRC2 is out-of-bounds expressed and its enterocytic target genes are repressed in celiac patients on gluten-containing diet.
Figure 2. Growing ‘minigut’ organoids from intestinal stem cells harvested from mouse intestinal crypts. We use organoids as a model for intestinal differentiation. 24h after harvesting intestinal stem cells proliferate and visible spheres can be seen in three-dimensional matrigel cultures. Same spheroidal organoid after six days of culturing (Pictures in the same scale). With specific inhibitor and/or growth factor cocktails organoids can be differentiated virtually to any intestinal epithelial cell type ex vivo.
Group members
Keijo Viiri, Group leader
PhD
Mikko Oittinen (MSc, PhD student)
Joel George (MSc, PhD student
Jorma Kulmala (Laboratory technician, part-time)
Selected Publications
Oittinen M, Popp A, Kurppa K, Lindfors K, Mäki M, Kaikkonen MU & Viiri K. ”PRC2 enacts Wnt signaling in intestinal homeostasis and contributes to the instigation of stemness in disease entailing epithelial hyperplasia or neoplasia” Stem Cells 2017 Feb; 35(2):445-457
Teppo S, Laukkanen S, Liuksiala T, Nordlund J, Oittinen M, Teittinen K, Grönroos T, Syvänen AC, Nykter M, Viiri K, Heinäniemi M, Lohi O. Genome-wide repression of eRNA and target gene loci by the TEL-AML1 fusion in acute leukemia” Genome Research 2016 Nov;26(11):1468-1477
Beltran M, Yates CM, Skalska L, Dawson M, Reis FP, Viiri K, Fisher CL, Sibley CR, Foster BM, Bartke T, Ule J & Jenner RG. “The interaction of PRC2 with RNA or chromatins is mutually antagonistic” Genome Research 2016 Jul; 26(7):896-907.
Mäntylä E, Salokas K, Oittinen M, Aho V, Mäntysaari P, Palmujoki L, Kalliolinna O, Ihalainen TO, Niskanen EA, Timonen J, Viiri K, Vihinen-Ranta M. ”Promoter-Targeted histone acetylation of chromatinized parvoviral genome is essential for the progress of infection” Journal of Virology 2016 Mar 28;90(8):4059-66.
Hervonen K, Salmi TT, Ilus T, Paasikivi K, Vornanen M, Laurila K, Lindfors K, Viiri K, Saavalainen P, Collin P, Kaukinen K, Reunala T. ”Dermatitis herpetiformis refractory to gluten-free dietary treatment.” ActaDermato-Venereologica. 2016 Jan; 96(1):82-6.
Vlachogiannis G, Niederhuth CE, Tuna S, Stathopoulou A, Viiri K, de Rooij DG, Jenner RG, Schmitz RJ, Ooi SK. “The Dnmt3L ADD domain Controls cytosine methylation establishment during spermatogenesis.” Cell Reports. 2015 Feb 12.
Viiri K, Mäki M, Lohi O. “Phosphoinositides as regulators of protein-chromatin interactions.” Science Signaling. 2012 May 1; 5(222):pe19.
Kanhere AS, Viiri K, Araújo CC, Rasaiyaah J, Bouwman RD, Whyte W, Pereira CF, Brookes E, Walker K, Bell GW, Pombo A, Fisher AG, Young RA , Jenner RG “Short RNAs are transcribed from repressed Polycomb target genes and interact with Polycomb Repressive Complex-2”. Molecular Cell 2010 Jun 11;38(5):675-88
Funding
Academy of Finland
TEKES – the Finnish Funding Agency for Technology and Innovation
Sigrid Jusélius Foundation
IASR – Institute for Advanced Social Research
Sohlberg Foundation
The Research Council for Health of the Academy of Finland granted five-year research fellowships to project director Ilkka Junttila and university researcher Keijo Viiri from the University of Tampere. Twelve fellowships were granted to eighty-five applicants, i.e. to fourteen percent of the applicants.
- Ilkka Junttila’s study is investigating how cytokines, especially Interleukin(IL)-4, regulates allergic inflammation. Immune response protects people against invading pathogens such as viruses, bacteria, parasites and yeasts. Inappropriately activated immune response can result in an autoimmune reaction or an allergic reaction. Humoral mediators, cytokines, are critical regulators of various immune responses. By understanding how IL-4 and its cell surface receptors function, its therapeutic utilisation, for example in autoimmune diseases to redirect immune response to less inflammatory direction, may become possible. The study will be conducted in cooperation between the University of Tampere, Tampere University Hospital, Fimlab Ltd and National Institutes of Health (United States) and it is based on Junttila’s previous studies.
- Keijo Viiri’s project will study the function of epigenetically dysregulated genes in coeliac disease. The main hallmark of the coeliac disease is the defectively differentiated intestinal epithelium, which leads to food malabsorption. The project previously discovered that an epigenetic gene-silencer called the polycomb controls the intestinal homeostasis between intestinal stem cells in crypts and mature epithelium in villi. In response to gluten ingestion, consequent aberrant polycomb activity was found to cause imbalance in intestinal homeostasis. The results are anticipated to reveal novel pathogenetic mechanisms and improve the diagnosis of the early coealiac disease.
http://www.uta.fi/tacc/research/signallingepigenetics/index.html
Information in the genome is written in the bases of DNA and misspellings (mutations) in this code have sometimes profound effects leading to diseases. Yet, genome is not a static entity where information is only stored but it needs mechanisms to regulate the usage of this information i.e. gene activation and repression. Scientific advances in couple of last decades have taught us that there is a rather plastic interface between genome and environment. These epigenetic mechanisms include DNA methylation and plethora of different histone modifications which in turn regulate gene expression and a given gene expression state is inherited to the daughter cells. Perturbations in epigenetic mechanisms can also contribute to diseases such as cancer. One epigenetic regulator called ‘Polycomb’ has been shown to be overexpressed in endometrial-, breast-, colon-, lung-, and skin cancer. Cell type specific expression programs are orchestrated through regulated access to chromatin. Polycomb proteins regulate developmental gene expression. Polycombs are essential for embryonic stem cell self-renewal and pluripotency but they are also necessary for the maintenance of cell identity and cell differentiation throughout life. It has been shown that overexpressed polycomb keeps cells in more proliferative and lower differentiation state, which inevitably is one of the hallmarks of cancer.
Reminiscent to hyper-proliferative state in cancer the main manifestation of Celiac disease is also more proliferative and lower differentiation state, namely of the epithelium of the small intestine leading to food malabsorption. We’ve found that polycomb maintains the homeostasis between intestinal stem cells and mature epithelium. Moreover this homeostasis is broken when celiac patients are on gluten containing diet.
As celiac disease is an ailment with the strong autoimmune component in its pathogenesis we strive to understand how intestinal barrier (epithelium, immune cells and lamina propria cells) is dysregulated in the disease. In our projects we use human and mouse primary cell cultures (intestinal organoids, primary myofibroblasts etc) and genome-wide techniques (such as ChIP-Seq) in endeavours to understand how signalling is reigned in intestinal barrier and how epigenetic mechanisms are running the errands of the signalling.
Figure 1. (A) Schematic representation of the role of Polycomb Repressive Complex 2 (PRC2) on enacting the Wnt/beta-catenin signaling and regulating the homeostasis of intestinal stem cell self-renewal and differentiation. At transit amplifying (TA) region PRC2 selectively set an epigenomic identity by labelling genes with repressive H3K27me3 mark and therefore enforce and maintain the dichotomy for crypt and villus identities. Scatter blot on the right demonstrates the genome-wide change in H3K27me3 occupancy during the differentiation of crypt/Intestinal stem cells to mature enterocytes. Blue dots represents all normalized differential H3K27me3 ChIP-Seq peaks near protein coding genes of the mouse genome (above genes silenced in crypts and below genes silenced in villi). Red coloured triangles denote the genes having significant gene expression difference measured by GRO-Seq and green arrows quantitatively illustrate the gene expression difference in enterocytes relative to crypts/ISCs (up=activation, down=repression). (B) PRC2 is out-of-bounds expressed and its enterocytic target genes are repressed in celiac patients on gluten-containing diet.
Figure 2. Growing ‘minigut’ organoids from intestinal stem cells harvested from mouse intestinal crypts. We use organoids as a model for intestinal differentiation. 24h after harvesting intestinal stem cells proliferate and visible spheres can be seen in three-dimensional matrigel cultures. Same spheroidal organoid after six days of culturing (Pictures in the same scale). With specific inhibitor and/or growth factor cocktails organoids can be differentiated virtually to any intestinal epithelial cell type ex vivo.
Group members
Keijo Viiri, Group leader
PhD
Mikko Oittinen (MSc, PhD student)
Joel George (MSc, PhD student
Jorma Kulmala (Laboratory technician, part-time)
Selected Publications
Oittinen M, Popp A, Kurppa K, Lindfors K, Mäki M, Kaikkonen MU & Viiri K. ”PRC2 enacts Wnt signaling in intestinal homeostasis and contributes to the instigation of stemness in disease entailing epithelial hyperplasia or neoplasia” Stem Cells 2017 Feb; 35(2):445-457
Teppo S, Laukkanen S, Liuksiala T, Nordlund J, Oittinen M, Teittinen K, Grönroos T, Syvänen AC, Nykter M, Viiri K, Heinäniemi M, Lohi O. Genome-wide repression of eRNA and target gene loci by the TEL-AML1 fusion in acute leukemia” Genome Research 2016 Nov;26(11):1468-1477
Beltran M, Yates CM, Skalska L, Dawson M, Reis FP, Viiri K, Fisher CL, Sibley CR, Foster BM, Bartke T, Ule J & Jenner RG. “The interaction of PRC2 with RNA or chromatins is mutually antagonistic” Genome Research 2016 Jul; 26(7):896-907.
Mäntylä E, Salokas K, Oittinen M, Aho V, Mäntysaari P, Palmujoki L, Kalliolinna O, Ihalainen TO, Niskanen EA, Timonen J, Viiri K, Vihinen-Ranta M. ”Promoter-Targeted histone acetylation of chromatinized parvoviral genome is essential for the progress of infection” Journal of Virology 2016 Mar 28;90(8):4059-66.
Hervonen K, Salmi TT, Ilus T, Paasikivi K, Vornanen M, Laurila K, Lindfors K, Viiri K, Saavalainen P, Collin P, Kaukinen K, Reunala T. ”Dermatitis herpetiformis refractory to gluten-free dietary treatment.” ActaDermato-Venereologica. 2016 Jan; 96(1):82-6.
Vlachogiannis G, Niederhuth CE, Tuna S, Stathopoulou A, Viiri K, de Rooij DG, Jenner RG, Schmitz RJ, Ooi SK. “The Dnmt3L ADD domain Controls cytosine methylation establishment during spermatogenesis.” Cell Reports. 2015 Feb 12.
Viiri K, Mäki M, Lohi O. “Phosphoinositides as regulators of protein-chromatin interactions.” Science Signaling. 2012 May 1; 5(222):pe19.
Kanhere AS, Viiri K, Araújo CC, Rasaiyaah J, Bouwman RD, Whyte W, Pereira CF, Brookes E, Walker K, Bell GW, Pombo A, Fisher AG, Young RA , Jenner RG “Short RNAs are transcribed from repressed Polycomb target genes and interact with Polycomb Repressive Complex-2”. Molecular Cell 2010 Jun 11;38(5):675-88
Funding
Academy of Finland
TEKES – the Finnish Funding Agency for Technology and Innovation
Sigrid Jusélius Foundation
IASR – Institute for Advanced Social Research
Sohlberg Foundation
Prenumerera på:
Inlägg (Atom)