Leta i den här bloggen

fredag 13 oktober 2017

Ohravelliaversio kansakoulun alaluokilla

Olin kansakoulun toisella luokalla siis  7-8 vuotias. koulu oli juuri muutanut  vanhasta puutalosta uuteen rakennukseen ja siellä oli hieno keittiö ja pitkät  pöydät luokkien  syödä ruokatunnilla. Yleeensä ruoka oli puuroja ja keittoja ja syötiin vain lusikalla. Maitoa oli  maitolasissa. muistan kaikista  kouluruoista ydhen jota en voinut syödä, "kalansilmävelli , ohravelli.  Opettaja  huomasi nyt että luistin syömisestä ja  otti itse lusikkani käteensä ja  syötti minua! Musitan, että kun poistuin ruokasalista rappusia yläkertaan päin,  huimasi ja olin pyörtyä.  En kuitenkaan kaatunut.
Meillä kotona ei ollut sellaista soppaa  ja jos olisi ollut, äitini ei koskaan pakottanut syömään yhtään mitään ruokaa, mitä en voinut syödä.   Vanhalla kansakoululla oli  ruokailut sellaisissa manttaalitalon olosuhteissa, puolipimeässä, että siellä ei kukaan huomannut, jos syötiin tai ei.  Ohraan tulee miltein sama reaktio kuin vehnän gliadiiniin, joten lasten aversio  kannattaa huomata tällaisista yksittäisistä  elintarvikkeista.   Anti-hordeiinivasta-aineita ei katsota,  kun seulotaan  gliadiinivasta-aineita.
Bildresultat för barley gruel


Missä elintarvikkeissa on ohraa?

OHRA allergia
missä on ohraa?
Löydän netistä tämän allamainitun  lähteen,  jossa keskitytään ohraa koskevaan tietoon. Elintarvikkeita, joissa on tai voi olla ohraa (Barley)


SITAATTI: 

Foods That Contain Barley
by Allergy Guy
For those of you who are celiac or allergic to barley, avoiding barley may not seem so bad. After all, it is much less common that wheat.
There are a few things to watch out for, and some of them are literally trick questions. Some ingredients look safe, but are in fact made from barley.
Here is a list of foods and food ingredients that contain (or may contain) barley or are derived from barley.
NOTE: This is not a complete list, but it will be updated as we discover additional information.

Ingredients Derived From Barley
Watch for the following on lists of ingredients. Many of these ingredients could be made from a variety of sources, including barley. Other than food that is specifically labeled “gluten-free”, you can’t be sure exactly what these ingredients are made from, and it may change over time and manufacturers use different suppliers.
If your favorite food contains one of these ingredients, try calling the manufacturer and asking them what the ingredient is derived from.
As general awareness in the food industry increases about gluten allergies and celiac disease, some manufacturers may shift from barley-derived ingredients to corn-derived ingredients.
  • Brown rice syrup (often made from barley)
  • Caramel color (sometimes made from barley)
  • Malt or malt flavoring (usually made from barley. Could be made from corn which is OK)
  • Malt vinegar
  • Maltose (often made from barley)
Foods Made From Barley
These foods are made from barley or can contain barley. Read ingredients to be sure.
  • Coffee substitutes.
  • Beer (could be made from wheat)
  • Whisky (generally ‘safe’ due to the distillation process, but highly sensitive individuals must research specific brands to be sure they are safe).
  • Mugicha (Japanese and Korean drink)
  • Soups and stews (check ingredients)
  • Fructan (a sweetener made from Barley)
  • Health foods (check ingredients)
Barley-Free Ingredients
Some ingredients look like they might be made from barley but are not:
  • Maltodextrin may be made from potato, corn or rice. In some cases it can be derived from wheat, but must be labels as such in the US (other countries may have different labeling laws).
Note: one reader reports that “pillsbury all purpose organic to be barley free”
(Visited 75,316 times, 18 visits today)


Leave a Comment

Olut ohramaltain vai gluteeniton olutvaihtoehto

Nykyään on olemassa gluteenitonta kaljaa tai olutta.
Perinteinen olut ja kalja tehdään käyttämällä imellytettyjä ohramaltaita.
PubMed lähteestä löytyy tästä asiasta tietteellinen tutkimus.  On testattu kolmenlaisen oluen sietoa    aktiivia keliaakiaa sairastavilta ja terveiltä kontrolleilta.
Tavallista  ohramaltaista tehtyä olutta,  tavallista olutta, josta gluteenia oli poistettu entsymaattisesti ja gluteenitonta olutta.
(Oman   ohra-aversion takia en ole itse  koskaan  eläissäni pitänyt kaljasta tai oluesta. Se vain ei  maistu   ellen nyt sanoisi: maistuu vastenmieliseltä. Nykyään on olemassa todellakin gluteenitonta kaljaa, muta  pelkkä uuden kokeileminenkaan ei oikein suju, sillä pinttynyt  käsitys  kymmeniltä vuosilta   ei hevin poistu).

https://www.ncbi.nlm.nih.gov/pubmed/28118560
J AOAC Int. 2017 Mar 1;100(2):485-491. doi: 10.5740/jaoacint.16-0184. Epub 2016 Dec 16.

The Celiac Patient Antibody Response to Conventional and Gluten-Removed Beer.

Abstract

Enzymatic digestion, or hydrolysis, has been proposed for treating gluten-containing foods and beverages to make them safe for persons with celiac disease (CD). There are no validated testing methods that allow the quantitation of all the hydrolyzed or fermented gluten peptides in foods and beverages that might be harmful to CD patients, making it difficult to assess the safety of hydrolyzed products. This study examines an ELISA-based method to determine whether serum antibody binding of residual peptides in a fermented barley-based product is greater among active-CD patients than a normal control group, using commercial beers as a test case.
Sera from 31 active-CD patients and 29 nonceliac control subjects were used to assess the binding of proteins from barley, rice, traditional beer, gluten-free beer, and enzymatically treated (gluten-removed) traditional beer.
In the ELISA, none of the subjects' sera bound to proteins in the gluten-free beer.
 Eleven active-CD patient serum samples demonstrated immunoglobulin A (IgA) or immunoglobulin G (IgG) binding to a barley extract, compared to only one nonceliac control subject.
 Of the seven active-CD patients who had an IgA binding response to barley, four also responded to traditional beer, and two of these responded to the gluten-removed beer.
None of the nonceliac control subjects' sera bound to all three beer samples.
Binding of protein fragments in hydrolyzed or fermented foods and beverages by serum from active-CD patients, but not nonceliac control subjects, may indicate the presence of residual peptides that are celiac-specific.
PMID:
28118560
DOI:
10.5740/jaoacint.16-0184
[Indexed for MEDLINE]

Ohran (Barley, Hordeum vulgare) prolamiineista ja gluteliineista

Ohran nimi on  HORDEUM VULGARE.

  • Ohran PROLAMIININ  nimi on hordeiini.
Omega-tyyppinen hordeiini on nimeltään C-hordeiini.
 http://www.uniprot.org/uniprot/P06472

        10         20         30         40         50
QPQQSYPVQP QQPFPQPQPV PQQRPQQASP LQPQQPFPQG SEQIIPQQPF 
        60         70         80         90        100
PLQPQPFPQQ PQQPLPQPQQ PFRQQAELII PQQPQQPLPL QPHQPYTQQT 

IWSMV   

Lisäksi  ohraprolamiineissa on gamma-tyypistä hordeiinia. Löytyy  gamma-1 ja gamma 3- hordeiineja. 

 Gamma-hordein-3
"Sulfur-rich hordein which possesses an N-terminal half composed of proline-glutamine blocks organized in repeating units and a C-terminal half where the repeats are dispersed and less conserved"
http://www.uniprot.org/uniprot/P80198

        10         20         30         40         50
ITTTTMQFNP SGLELERPQQ LFPQWQPLPQ QPPFLQQEPE QPYPQQQPLP 
        60         70         80         90        100
QQQPFPQQPQ LPHQHQFPQQ LPQQQFPQQM PLQPQQQFPQ QMPLQPQQQP 
       110        120        130        140        150
QFPQQKPFGQ YQQPLTQQPY PQQQPLAQQQ PSIEEQHQLN LCKEFLLQQC 
       160        170        180        190        200
TLDEKVPLLQ SVISFLRPHI SQQNSCQLKR QQCCQQLANI NEQSRCPAIQ 
       210        220        230        240        250
TIVHAIVMQQ QVQQQVGHGF VQSQLQQLGQ GMPIQLQQQP GQAFVLPQQQ 
       260        270        280 
AQFKVVGSLV IQTLPMLCNV HVPPYCSPFG SMATGSGGQ  

Gamma-hordein-1
http://www.uniprot.org/uniprot/P17990
  • Ohran GLUTELIINIOSA

Ohran gluteliineilla on  alayksiköt HMW( korkeamolekyylipainoinen)  ja LMW (matalampimolekyylipainoinen.

Ohran gluteliinin   LMW  alayksikkö  koostuu B-hordeiineista, joiden C-terminaalit  muistuttavat  vehnän  gluteliinien LMW alayksikköjä.
 B-hordeiinien N-terminaalit käsittävät  vain toistojaksoja, jotka ovat  gamma-hordeiinien (ohraprolamiinien)  toistojaksojen kaltaisia.

B-hordeiinin sekvenssi löytyy netistä.

MKTFLVFALL VIAATSTIAQ QQPFPQQPFP QQPQPYPQQP QPYPQQPFQP 
        60         70         80         90        100
QQPFPQQPQP YPQQPQPYPQ QPQPFPQQPF PSQQPFPQQP PFWQQQPVLS 
       110        120        130        140        150
QQQPCTQDQT PLLQEQQDQM LLQVQIPFVH PSILQQLNPC KVFLQQQCSP 
       160        170        180        190        200
VAMSQRIARS QMLQQSSCHV LQQQCCQQLP QIPEQIRHEA VRAIVYSIVL 
       210        220        230        240        250
QEQPLQLVQG VSQPQKQLGQ QQVGQCSFQQ PQPQQVGQQQ QVPQSAFLQP 
       260        270        280        290
HQIAQFEATT SIALRTLPTM CSVNVPSYRI LRGVGPSVGV  




(1) (2) (3)(4) Coeliac symposium 1998 facta. Prolamins in cereals


The Finnish Coeliac Society. Tampere. 10-12 July 1998.
Changing Features of Coeliac Diseases.
Edited by Susanna Lohiniemi, Pekka Collin, Markku Mäki


Herbert Wieser. Prolamins in Cereals. Deutsche Forschungsanstalt für Lebensmittelchemie, Germany.

1. Proteins in cereals

Cereals constitute one of the most important basic components in human nutrition and are cultivated almost all over the world. They are species of grasses (family Pooideae) with highly developed seeds characterised by high starch (32-73 %) and low water content (11-14 %). Wheat, rice and maize account for more than 80 80 % of total cereal production (1996: 2050 Mt), but the other common cereals - barley, sorghum, oats, millet and rye- are also of great importance for specific regions. Cereals which evidently activate coeliac disease (wheat, rye, abrley) belong to the tribe Triticeae, and share a close tqaxonomic relationship. Oats, controversial with respect to coeliac disease, are related more distantly to the Triticeae. The non-toxic cerelas maize, sorghum, millet and rice, however, show separated evolutionary lines within the grass family.

Usually cereal grains contains 7-16 % protein, which, in terms of function, can be classified into three types: 1: structural proteins like membrane proteins located in the outer parts of the kernels; 2: metabolic proteins, e.g. enzymes and enzyme inhibitors, present mainly in the aleurone layer and embryo, and 3: storage proteins occurring exclusively in the starchy endosperm. The proteins of the latter type make up about 70- 80 % of the total grain protein ; they are unique to cereals, and their main function is to provide the developing embryo with nitrogen and amino acids.

Traditionally, storage protein have been grouped into two fractions, the prolamines, soluble in aqueous alcohols and the glutelins insoluble in aqueous alcohols. In this article, the term, ”prolamines” is not used for both alcohol-soluble and insoluble storage proteins as proposed by Shewry et al., but in the classical definition: prolamins are cereal endosperm proteins soluble in aqueous alcohols without reduction of disulphide bonds. While the prolamins occur in grains and flour predominantly as monomers, the glutelins are linked by disulphide bonds and are present in an aggregated state with molecular weights up to millions. 


2.  Characterization of prolamin fractions

Herbert Wieser. Prolamins in Cereals. Deutsche Forschungsanstalt für Lebensmittelchemie, Germany.

The prolamin fractions of the various cereals have been given trivial names; gliadin (wheat), secalin (rye), hordein (barley), avenin (oats), zein ( maize), kafirin (sorghum, millet) and oryzin ( rice. The prolamin content on cereal flours varies considerably and depends on species, variety and growing conditions. On an average, wheat has the highest content of prolamin ( 3-6 g/100 g flour) followed by maize, whereas rice is almost free of prolamins.


The name ”prolamins” reflects the characteristics of amino acid compositions: high contents of proline (Pro, P) and glutamine (Gln, Q), which is particularly true for coeliac toxic gliadin, secalin and hordein (Table 1).
 Prolamins of rice, millet, sorghum and maize are lower in glutamine (Q) and proline (P), but rich in leucine (L) and alanine (A); avenin of oats is in medium position.
Altogether, the proportions of the major amino acids, in particular of glutamine (Q) and proline (P), in prolamins reflect very well their coeliac toxicity. 
Features common to all prolamins are low contents of the essential amino acids methionine (M), lysine (K) and tryptophan (W). For this reason, the biological value of prolamins is rather low, and from nutritional point of view, a gluten-free diet is not disadvantageous for consumers. 

The range of molecualr masses shown in table 1 indicates that the prolamins of wheat, rye and barley differ from other prolamins by significantly higher values. 

Partial aminoacid composition (mol-%)
Amino
acid name
Gliadin Secalin Hordein Avenin Oryzin Kafirin Zein

Gln (Q) 37 35 35 34 20 22 19

Pro (P) 17 18 23 10 5 8 10

Leu (L) 7 6 6 11 12 13 19

Ala (A) 3 3 2 6 9 14 14

Met (M) 1 1 1 2 1 2 1

Lys (K) 1 1 1 1 1 0 0

Trp (W) 0 0 1 0 1 2 0

Range of molecular masses
Gliadin 32 000- 74 000
Secalin 40 000- 53 000
Hordein 35 000 -72 000
Avenin 20 000 - 30 000
Oryzin 11 000 - 23 000
Kafirin 20 000 - 24 000
Zein 19 000 - 26 000.

3. Classification of prolamin components

Herbert Wieser. Prolamins in Cereals. Deutsche Forschungsanstalt für Lebensmittelchemie, Germany.

The prolamin fraction consist of numerous, in part closely related proteins. According to their amino acid sequences, amino acid compositions and molecular masses, they can be classified into different types.
Gliadin, secalin and hordein have two common types: the omega-type ( kreikk. ω): ω -gliadin, ω-secalin and ω- hordein) and the gamma-type (kreikk. γ) (γ-gliadins, γ-secalins and γ-hordein); gliadin additionally contains alfa-type (kreikk. α) ( α-gliadins).

Omega (ω) -Type prolamins (omega-type) have high contents of glutamine ( Q, Gln) 48 mol-%), prolamine (P, Pro) about 25 mol-% and phenylalanine (F, Phe) ( about 8 mol-%), which together accounts for about 80 % of the total composition Their molecular masses are in a range from 53 000- 64 000. The complete amino acid sequences of these proteins have not yet (1998) been described, with the exception of a C-hordein, the corresponding gene of which has been proposed to be silent, but some information on partial sequencess does exists.
Omega (ω)-prolamins consist almost entirely of repetitive sequences with only short, non-repetitive N- and C-terminal sequences. The most dominant repeat appears to be QQPQQPFP with numerous modifications of single residues.
Gamma (γ)- type prolamins of wheat, rye and barley have molecular masses of about 30 000 and are homologous to a high degree. Their primary structures are divided into two completely different domains. Their primary structures are divided into two completely different domains.
The N-terminal domain ( Division I about 140 amino acid residues) has short N-terminal sequences which are non-repetitive. Then, repetitive sequences follow; they have motifs similar to those of omega(ω)-gliadins and are rich in glutamine (Q), proline(P) and phenylalanine (F). ( Table 2).
The C-terminal domain (divisions III-V, about 160 amino acid residues) possesses a more usual amino acid composition with less glutamine (Q) and proline(P), but more charged residues: glutamic acid ( Glu, E), lysine (Lys, K), arginine (Arg, R) and hydrophobic residues: leucine (Leu, L), isoleucine (Ile, I), valine ( Val, V). In this domain, cysteine (Cys, C) residues are also present, forming intramolecular disulphide bonds (-s-s-). Partially, the sequences show homology with seed proteins of other plants, e.g. rape. castor bean.

Alfa( α) -type gliadins are unique to the wheat.
Typically these proteins have an N-terminal domain with two different sequence divisions: the N-terminal division I is partially non-repetitive (about 32 residues), partially repetitive, consisting of motifs like QPQPFPPQQPYP, which are mostly repeated five times. Furthermore, one or two poly-Gln-sequences (Poly-Q-sequences) (division II with maximal 18 residues of Gln, (Q) are present. The amino acid composition (Table 2) is similar to that of the gamma (γ)-type, but with lower proline (P) and higher tyrosine (Y) contents.
The C-terminal domain of the alfa(α)-type is homologous in divisions III and V with the (γ)-type, and contain three intramolecular disulphide bonds (-s-s-).

Avenins, the prolamins of oats, are homologous with the alfa (α)- and gamma(γ)-type prolamins within division III and V of the C-terminal domain. (Figure1). Eight cysteine residues (Cys) are present in these divisions, all forming intramolecular disulphide bonds. Unique to avenins are the repetitive sequences in divisions IV with repetitive motifs like QQQVFQPL or QQQFFQPQM, which are repeated four times and frequently modified.
The N-terminal domain is characterised by non-repetitive sequences ( about 16 residues) and by short repetitive sequences consisting of three repeats of the motif QQQQPFV or QQQQMLL.
The primary structures of the non-toxic prolamins oryzin, kafirin and zein are, as far as is known, completely different from those of toxic prolamins.

Altogether, the N-terminal domains and- in particular, their repetitive sequences are unique to toxic prolamins and mainly characterised by high contents of glutamine (Q), proline(P) and aromatic amino acids ( F,Y,W) (Table 2). Their secondary stricture is characterized by the frequent occurrence of beta-turn conformations. Most in -vivo and in-vitro testing of prolamin (gliadin) peptides demonstrated that regions of the N-terminal domains are involved in activating coeliac disease.

(eräs löytämäni moderni linkki:
http://www.mdpi.com/2072-6643/8/10/644/htm)



N-
terminal












IV V C-
terminal

4. Relation between prolamins and glutelins

Glutelins are the second major protein fractions in cereal endosperm. They comprise aggregated proteins linked by disulphide bonds (-s-s-). After reduction of disulphide bonds, the resulting subunits are as soluble in aqueous alcohol as prolamins.
Glutelin subunits of wheat, rye and barley can be classified into high- molecule-weight (HMW) and low-molecule-weight(LMW) subunits.

The HMW subunits of three cereals are homologous to a high degree. They have molecular masses in a range of 95 000- 136 000 (determined by SDS-PAGE) and contain three different domains: a non-repetitive N-terminal domain with about 100 residues, a central repetitive domain with about 400-700 residues and a non-repetitive C-terminal domain with about 40 residues.
Both N-terminal and C-terminal have relatively well-balanced amino-acid compositions with most or all of the cysteine residues.
The central domain is rich in glutamine (Q), glycine (G) and proline (P) and contains repetitive hexapeptides like QQPGQG as a backbone, which are repeated about 50 to 70 times and frequently modified and interspersed by motifs like YYPTSP an QPG. A remarkable sequence homology to prolamins cannot be detected.
In contrast, LMW subunits of glutelins are partially or highly homologous to the corresponding prolamin.

LMW subunits of glutenin ( glutelin of wheat) ar homologous to alfa-and gamma-type gliadin within division III and V of the C-terminal domain. ( Figure 1). Division IV is less homologous, elongated about 20 residues, and contains one cysteine residue, which forms an intermolecular disulphide bond with other gluten proteins.
The N-terminal domain (division I) differs significantly from those of alfa- and gamma-type prolamins and is characterised by short non-repetitive and long repetitive sequences. The typical repeat motifs contain a series of glutamines (Q) (two to six residues) followed by units such as PPFS. A small portion of omega-, alfa- and gamma-type gliadins is also present in the glutelin fraction. By substitution of a single residue by cysteine, they have an odd number of cysteines and are covalently bound to the glutenin aggregate; consequently, they are not extractable with aqueous alcohols. This could be the reason why glutenin has been described as weakly toxic.

LMW subunits of rye glutelin comprise a group of proteins with a molecular mass of about 75 000 and are named 75 K gamma-secalin, because they are closely related to the corresponding gamam-type prolamins (40 K-gamma (γ)-secalin). It has been proposed that 75 K γ-secalins were formed from 40 K (γ)-secalins by elongation of the glutamine (Q)- and proline (P)-rich repetetive sequences and by insertion of at least one cysteine residue.

LMW subunits of barley glutelin (B-hordeins) have C-terminal domains highly homologous with those of LMW subunits of wheat. The N-terminal domain consists exclusively of repetetive sequences related to those of gamma(γ)-hordeins.

Summarising, one portion of the glutelin subunits , namely the HMW subunits, are totally different from prolamins, whereas the other portion, the LMW subunits, are closely related to corresponding prolamins in the case of rye and abrley. The LMW subunits of wheat, however, have respective sequences distinctly different from those of the gliadins.
(Tabel 1)

Taulukko 2 ei ole kirjoitettu näkyviin.
Kuva 1 ei ole kirjoitettu näkyviin.
Yllä oleva  tekemäni kaava vain selventänee  N- ja C- terminaalin ja  niiden  divisioiden jaon periaatteen.



Mitä tiedetään nykyään viljan toksisista prolamiineista ja gluteliineista?

 OHRA  päivän aiheena. (Barley) . Ohran prolamiini on hordeiini.  Ohralla on myös gluteliini. 
Miksi aloitan tänään ohrasta,  itse asiassa ohran jyvästä . Olipa kerran... kuten hyvän ajan sadut alkavat- olipa kerran taas lääke-esittelijän käynti tulossa terveyskeskukseen, jossa olin töissä.  Kaikki periferian lääkärit odottivat kuin keidasta lääke-esittelijöiden  käyntejä, sillä  lääkeinformaation ohella saimme usein aterian tai kakkukahvit.  Tällä kertaa oli herkullista salaattia ja siinä oli pieniä riisinjyviä  joukossa.  Salaatti tuli nautittua sivumennen  lääkeinformaatiota kuunnellessa. - Mutta  salaateissa piilevät jyvät eivät olleetkaan riisiä, vaan OHRAA.  En tuntenut itse asiassa ohran jyvää  kovin tarkasti,  sillä se näytti aivan kuin  kuorimattoman riisin keitetyltä jyvältä. .. Siihen satumainen  satu loppuikin ja jonkin viikon ajan kärsin vaikeasta  suolistoreaktiosta.  sillä  jo lapsuudesta asti minulla on ollut ohra- aversio, joten  ohraa en edes  pitänyt ongelmana, koska en ollut sitä yleensä syönyt aversion takia.   Osasin jotenkin  varoa ohraa vielä enemmän kuin vehnää.  Sen takia  jollain tavalla  tieto ohrasta nyt   kiinnostaa, mutta siitä on vaikea saada tietoa. Sitä ei käsitellä erikseen.   se on ilmeiseti minulle yksilöllisesti ottaen  pahempi suoliallergeeni kuin vehnä,. vehnä taas aiheuttaa paljon laajemmin  monimuotoisia allergioita ja  elimistöreaktioita. MIKÄ on tuo ohran toksinen peptidi? 
.....
Sellaisen henkilön joka voi käyttää kotimaisia viljoja, on vaikea  saada  insiktiä näistä termeistä prolamiinit ja gluteliinit ja gluteeni
 
 Lisäksi keliakikoiden,  joiden tulee käyttää "gluteenittomia tuotteita", on vaikea tehdä arviota siitä, pitääkö välttää kauraa vai ei.  He eivät edes voi ottaa kantaa asiaan. 
 
 Huomaan että aikoessani  kirjoitaa vain ohrasta, en vältä  sitä  tilannetta, että täytyy kuvata kaikki toksiset viljat ja niiden kyseessä olevat proteiinit.
 
  Ensimmäisenä prolamiinina pystyttiin C-hordeiini  ohrasta määrittämään. Jo 1998 aikaan sen rakenne oli selvillä, kun muiden tarkka  rakenne oli vielä tuntematon. Niistä tiedettiin kyllä 1998 jo  hahmoja ja siitä on hyvä artikkeli symposiumissa 1998.
 "Strangest protein"- sanottiin symposiumissa kun kerrottiin gluteenista. 

On   varmasti  aiheellista kirjoittaa englanniksi tietokoneelle symposiumin 1998 perustava informaatio, jotta kaikki "pääsevät kärryille", Asia  hämärtyisi  vielä enemmän jos kirjoitan käännöksen suomeksi.  Symposium oli vain englanniksi. 

(Huomaan  vain tässä PubMed -  artikkelista että nykyisin on onneksi   Codexkynnys  gluteenille 20 ppm).


Lähde:
Epub 2016 Jun 24.  Comparative analysis of prolamin and glutelin fractions from wheat, rye, and barley with five sandwich ELISA test kits.
Abstract
The safety of gluten-free foods is essential for celiac disease (CD) patients to prevent serious complications. Enzyme-linked immunosorbent assays (ELISAs) are recommended for gluten analysis to monitor the compliance of gluten-free products to the Codex threshold of 20 mg gluten/kg.
(20 mg/1 000 000 mg , 20 ppm, parts per million)

However, due to the specific features of each gluten ELISA test kit, the results often deviate systematically and largely depend on the characteristics of the antibody. This comprehensive study assessed the specificities and sensitivities of three monoclonal (R5, G12, and Skerritt) and two polyclonal antibodies to the alcohol-soluble prolamin and alcohol-insoluble glutelin fractions of gluten from wheat, rye, and barley, all of which harbor CD-active epitopes.

 Reversed-phase high-performance liquid chromatography served as independent reference method to quantify gluten protein concentrations and allow comparisons of different gluten fractions within one kit and between kits.

 Wheat prolamins were detected quite accurately by all antibodies, but high variability between antibody specificities and sensitivities was observed for rye and barley prolamins and rye glutelins, and the largest discrepancies were found for wheat and barley glutelins.

 The gluten content (sum of prolamins and glutelins) was either overestimated up to six times (rye) or underestimated up to seven times (barley).

 Overestimation of gluten contents may unnecessarily limit the availability of gluten-free products, but underestimation represents a serious health risk for CD patients. It is important to consider these differences between antibodies used in kits and consider what each kit is capable of measuring, especially with samples where the source of gluten is unknown.

KEYWORDS:

Barley; Celiac disease; Enzyme-linked immunosorbent assay (ELISA); Gluten analysis; Rye; Wheat
PMID:
27342795
DOI:
10.1007/s00216-016-9721-7

söndag 8 oktober 2017

Nimipäiväateria

Nuorin tyttäreni  osti minulle  kauniin atsalean 7.10. 2017 ja teki illalliseksi uunilohta, keitettyä riisiä , brokkolia, parsanvarsia, tuoretta paprikaa,   majoneesin kera.   Kahvin kanssa suklaata.
lisäksi  oli leipää josta otan kuvan erikseen.