Meillä kotona ei ollut sellaista soppaa ja jos olisi ollut, äitini ei koskaan pakottanut syömään yhtään mitään ruokaa, mitä en voinut syödä. Vanhalla kansakoululla oli ruokailut sellaisissa manttaalitalon olosuhteissa, puolipimeässä, että siellä ei kukaan huomannut, jos syötiin tai ei. Ohraan tulee miltein sama reaktio kuin vehnän gliadiiniin, joten lasten aversio kannattaa huomata tällaisista yksittäisistä elintarvikkeista. Anti-hordeiinivasta-aineita ei katsota, kun seulotaan gliadiinivasta-aineita.
fredag 13 oktober 2017
Ohravelliaversio kansakoulun alaluokilla
Olin kansakoulun toisella luokalla siis 7-8 vuotias. koulu oli juuri muutanut vanhasta puutalosta uuteen rakennukseen ja siellä oli hieno keittiö ja pitkät pöydät luokkien syödä ruokatunnilla. Yleeensä ruoka oli puuroja ja keittoja ja syötiin vain lusikalla. Maitoa oli maitolasissa. muistan kaikista kouluruoista ydhen jota en voinut syödä, "kalansilmävelli , ohravelli. Opettaja huomasi nyt että luistin syömisestä ja otti itse lusikkani käteensä ja syötti minua! Musitan, että kun poistuin ruokasalista rappusia yläkertaan päin, huimasi ja olin pyörtyä. En kuitenkaan kaatunut.
Meillä kotona ei ollut sellaista soppaa ja jos olisi ollut, äitini ei koskaan pakottanut syömään yhtään mitään ruokaa, mitä en voinut syödä. Vanhalla kansakoululla oli ruokailut sellaisissa manttaalitalon olosuhteissa, puolipimeässä, että siellä ei kukaan huomannut, jos syötiin tai ei. Ohraan tulee miltein sama reaktio kuin vehnän gliadiiniin, joten lasten aversio kannattaa huomata tällaisista yksittäisistä elintarvikkeista. Anti-hordeiinivasta-aineita ei katsota, kun seulotaan gliadiinivasta-aineita.

Meillä kotona ei ollut sellaista soppaa ja jos olisi ollut, äitini ei koskaan pakottanut syömään yhtään mitään ruokaa, mitä en voinut syödä. Vanhalla kansakoululla oli ruokailut sellaisissa manttaalitalon olosuhteissa, puolipimeässä, että siellä ei kukaan huomannut, jos syötiin tai ei. Ohraan tulee miltein sama reaktio kuin vehnän gliadiiniin, joten lasten aversio kannattaa huomata tällaisista yksittäisistä elintarvikkeista. Anti-hordeiinivasta-aineita ei katsota, kun seulotaan gliadiinivasta-aineita.
Missä elintarvikkeissa on ohraa?
OHRA allergia
missä on ohraa?
Löydän netistä
tämän allamainitun lähteen, jossa keskitytään ohraa koskevaan tietoon.
Elintarvikkeita, joissa on tai voi olla ohraa (Barley)
SITAATTI:
Foods
That Contain Barley
by Allergy Guy
For those of you
who are celiac
or allergic to
barley,
avoiding barley
may not seem so bad. After all, it is much less common that wheat.
There are a few
things to watch out for, and some of them are literally trick
questions. Some ingredients
look safe, but are in fact made from barley.
Here is a list of
foods and food ingredients that contain (or may contain) barley or
are derived from barley.
NOTE:
This is not a complete list, but it will be updated as we discover
additional information.
Ingredients
Derived From Barley
Watch for the
following on lists of ingredients. Many of these ingredients could
be made from a variety of sources, including barley. Other than food
that is specifically labeled “gluten-free”,
you can’t be sure exactly what these ingredients are made from,
and it may change over time and manufacturers use different
suppliers.
If your favorite
food contains one of these ingredients, try calling the manufacturer
and asking them what the ingredient
is derived from.
As general
awareness in the food industry increases about gluten allergies and
celiac
disease, some manufacturers may shift from barley-derived
ingredients to corn-derived ingredients.
-
Brown rice syrup (often made from barley)
-
Caramel color (sometimes made from barley)
-
Malt or malt flavoring (usually made from barley. Could be made from corn which is OK)
-
Malt vinegar
-
Maltose (often made from barley)
Foods
Made From Barley
These foods are
made from barley or can contain barley. Read ingredients to be sure.
-
Coffee substitutes.
-
Beer (could be made from wheat)
-
Whisky (generally ‘safe’ due to the distillation process, but highly sensitive individuals must research specific brands to be sure they are safe).
-
Mugicha (Japanese and Korean drink)
-
Soups and stews (check ingredients)
-
Fructan (a sweetener made from Barley)
-
Health foods (check ingredients)
Barley-Free
Ingredients
Some ingredients
look like they might be made from barley but are not:
-
Maltodextrin – may be made from potato, corn or rice. In some cases it can be derived from wheat, but must be labels as such in the US (other countries may have different labeling laws).
Note: one
reader reports that “pillsbury all purpose organic to be barley
free”
(Visited 75,316
times, 18 visits today)
Olut ohramaltain vai gluteeniton olutvaihtoehto
Nykyään on olemassa gluteenitonta kaljaa tai olutta.
Perinteinen olut ja kalja tehdään käyttämällä imellytettyjä ohramaltaita.
PubMed lähteestä löytyy tästä asiasta tietteellinen tutkimus. On testattu kolmenlaisen oluen sietoa aktiivia keliaakiaa sairastavilta ja terveiltä kontrolleilta.
Tavallista ohramaltaista tehtyä olutta, tavallista olutta, josta gluteenia oli poistettu entsymaattisesti ja gluteenitonta olutta.
(Oman ohra-aversion takia en ole itse koskaan eläissäni pitänyt kaljasta tai oluesta. Se vain ei maistu ellen nyt sanoisi: maistuu vastenmieliseltä. Nykyään on olemassa todellakin gluteenitonta kaljaa, muta pelkkä uuden kokeileminenkaan ei oikein suju, sillä pinttynyt käsitys kymmeniltä vuosilta ei hevin poistu).
https://www.ncbi.nlm.nih.gov/pubmed/28118560
Perinteinen olut ja kalja tehdään käyttämällä imellytettyjä ohramaltaita.
PubMed lähteestä löytyy tästä asiasta tietteellinen tutkimus. On testattu kolmenlaisen oluen sietoa aktiivia keliaakiaa sairastavilta ja terveiltä kontrolleilta.
Tavallista ohramaltaista tehtyä olutta, tavallista olutta, josta gluteenia oli poistettu entsymaattisesti ja gluteenitonta olutta.
(Oman ohra-aversion takia en ole itse koskaan eläissäni pitänyt kaljasta tai oluesta. Se vain ei maistu ellen nyt sanoisi: maistuu vastenmieliseltä. Nykyään on olemassa todellakin gluteenitonta kaljaa, muta pelkkä uuden kokeileminenkaan ei oikein suju, sillä pinttynyt käsitys kymmeniltä vuosilta ei hevin poistu).
https://www.ncbi.nlm.nih.gov/pubmed/28118560
J AOAC Int. 2017 Mar 1;100(2):485-491. doi: 10.5740/jaoacint.16-0184. Epub 2016 Dec 16.
The Celiac Patient Antibody Response to Conventional and Gluten-Removed Beer.
Abstract
Enzymatic
digestion, or hydrolysis, has been proposed for treating
gluten-containing foods and beverages to make them safe for persons with
celiac disease (CD). There are no validated testing methods that allow
the quantitation of all the hydrolyzed or fermented gluten peptides in
foods and beverages that might be harmful to CD patients, making it
difficult to assess the safety of hydrolyzed products. This study
examines an ELISA-based method to determine whether serum antibody
binding of residual peptides in a fermented barley-based product is
greater among active-CD patients than a normal control group, using
commercial beers as a test case.
Sera from 31 active-CD patients and 29 nonceliac control subjects were used to assess the binding of proteins from barley, rice, traditional beer, gluten-free beer, and enzymatically treated (gluten-removed) traditional beer.
In the ELISA, none of the subjects' sera bound to proteins in the gluten-free beer.
Eleven active-CD patient serum samples demonstrated immunoglobulin A (IgA) or immunoglobulin G (IgG) binding to a barley extract, compared to only one nonceliac control subject.
Of the seven active-CD patients who had an IgA binding response to barley, four also responded to traditional beer, and two of these responded to the gluten-removed beer.
None of the nonceliac control subjects' sera bound to all three beer samples.
Binding of protein fragments in hydrolyzed or fermented foods and beverages by serum from active-CD patients, but not nonceliac control subjects, may indicate the presence of residual peptides that are celiac-specific.
Sera from 31 active-CD patients and 29 nonceliac control subjects were used to assess the binding of proteins from barley, rice, traditional beer, gluten-free beer, and enzymatically treated (gluten-removed) traditional beer.
In the ELISA, none of the subjects' sera bound to proteins in the gluten-free beer.
Eleven active-CD patient serum samples demonstrated immunoglobulin A (IgA) or immunoglobulin G (IgG) binding to a barley extract, compared to only one nonceliac control subject.
Of the seven active-CD patients who had an IgA binding response to barley, four also responded to traditional beer, and two of these responded to the gluten-removed beer.
None of the nonceliac control subjects' sera bound to all three beer samples.
Binding of protein fragments in hydrolyzed or fermented foods and beverages by serum from active-CD patients, but not nonceliac control subjects, may indicate the presence of residual peptides that are celiac-specific.
- PMID:
- 28118560
- DOI:
- 10.5740/jaoacint.16-0184
- [Indexed for MEDLINE]
Ohran (Barley, Hordeum vulgare) prolamiineista ja gluteliineista
Ohran nimi on HORDEUM VULGARE.
http://www.uniprot.org/uniprot/P06472
Lisäksi ohraprolamiineissa on gamma-tyypistä hordeiinia. Löytyy gamma-1 ja gamma 3- hordeiineja.
Gamma-hordein-3
"Sulfur-rich hordein which possesses an N-terminal half composed of proline-glutamine blocks organized in repeating units and a C-terminal half where the repeats are dispersed and less conserved"
http://www.uniprot.org/uniprot/P80198
Gamma-hordein-1
http://www.uniprot.org/uniprot/P17990
Ohran gluteliineilla on alayksiköt HMW( korkeamolekyylipainoinen) ja LMW (matalampimolekyylipainoinen.
Ohran gluteliinin LMW alayksikkö koostuu B-hordeiineista, joiden C-terminaalit muistuttavat vehnän gluteliinien LMW alayksikköjä.
B-hordeiinien N-terminaalit käsittävät vain toistojaksoja, jotka ovat gamma-hordeiinien (ohraprolamiinien) toistojaksojen kaltaisia.
B-hordeiinin sekvenssi löytyy netistä.
- Ohran PROLAMIININ nimi on hordeiini.
http://www.uniprot.org/uniprot/P06472
10 20 30 40 50 QPQQSYPVQP QQPFPQPQPV PQQRPQQASP LQPQQPFPQG SEQIIPQQPF 60 70 80 90 100 PLQPQPFPQQ PQQPLPQPQQ PFRQQAELII PQQPQQPLPL QPHQPYTQQT IWSMV
Lisäksi ohraprolamiineissa on gamma-tyypistä hordeiinia. Löytyy gamma-1 ja gamma 3- hordeiineja.
Gamma-hordein-3
"Sulfur-rich hordein which possesses an N-terminal half composed of proline-glutamine blocks organized in repeating units and a C-terminal half where the repeats are dispersed and less conserved"
http://www.uniprot.org/uniprot/P80198
10 20 30 40 50 ITTTTMQFNP SGLELERPQQ LFPQWQPLPQ QPPFLQQEPE QPYPQQQPLP 60 70 80 90 100 QQQPFPQQPQ LPHQHQFPQQ LPQQQFPQQM PLQPQQQFPQ QMPLQPQQQP 110 120 130 140 150 QFPQQKPFGQ YQQPLTQQPY PQQQPLAQQQ PSIEEQHQLN LCKEFLLQQC 160 170 180 190 200 TLDEKVPLLQ SVISFLRPHI SQQNSCQLKR QQCCQQLANI NEQSRCPAIQ 210 220 230 240 250 TIVHAIVMQQ QVQQQVGHGF VQSQLQQLGQ GMPIQLQQQP GQAFVLPQQQ 260 270 280 AQFKVVGSLV IQTLPMLCNV HVPPYCSPFG SMATGSGGQ
Gamma-hordein-1
http://www.uniprot.org/uniprot/P17990
- Ohran GLUTELIINIOSA
Ohran gluteliineilla on alayksiköt HMW( korkeamolekyylipainoinen) ja LMW (matalampimolekyylipainoinen.
Ohran gluteliinin LMW alayksikkö koostuu B-hordeiineista, joiden C-terminaalit muistuttavat vehnän gluteliinien LMW alayksikköjä.
B-hordeiinien N-terminaalit käsittävät vain toistojaksoja, jotka ovat gamma-hordeiinien (ohraprolamiinien) toistojaksojen kaltaisia.
B-hordeiinin sekvenssi löytyy netistä.
MKTFLVFALL VIAATSTIAQ QQPFPQQPFP QQPQPYPQQP QPYPQQPFQP 60 70 80 90 100 QQPFPQQPQP YPQQPQPYPQ QPQPFPQQPF PSQQPFPQQP PFWQQQPVLS 110 120 130 140 150 QQQPCTQDQT PLLQEQQDQM LLQVQIPFVH PSILQQLNPC KVFLQQQCSP 160 170 180 190 200 VAMSQRIARS QMLQQSSCHV LQQQCCQQLP QIPEQIRHEA VRAIVYSIVL 210 220 230 240 250 QEQPLQLVQG VSQPQKQLGQ QQVGQCSFQQ PQPQQVGQQQ QVPQSAFLQP 260 270 280 290 HQIAQFEATT SIALRTLPTM CSVNVPSYRI LRGVGPSVGV
(1) (2) (3)(4) Coeliac symposium 1998 facta. Prolamins in cereals
The Finnish Coeliac
Society. Tampere. 10-12 July 1998.
Changing Features of
Coeliac Diseases.
Edited by Susanna
Lohiniemi, Pekka Collin, Markku Mäki
Herbert Wieser.
Prolamins in Cereals. Deutsche Forschungsanstalt für
Lebensmittelchemie, Germany.
1. Proteins in cereals
Cereals constitute
one of the most important basic components in human nutrition and
are cultivated almost all over the world. They are species of grasses
(family Pooideae) with highly developed seeds characterised by high
starch (32-73 %) and low water content (11-14 %). Wheat, rice and
maize account for more than 80 80 % of total cereal production
(1996: 2050 Mt), but the other common cereals - barley, sorghum,
oats, millet and rye- are also of great importance for specific
regions. Cereals which evidently activate coeliac disease (wheat,
rye, abrley) belong to the tribe Triticeae, and share a close
tqaxonomic relationship. Oats, controversial with respect to
coeliac disease, are related more distantly to the Triticeae. The
non-toxic cerelas maize, sorghum, millet and rice, however, show
separated evolutionary lines within the grass family.
Usually cereal
grains contains 7-16 % protein, which, in terms of function, can be
classified into three types: 1: structural proteins like
membrane proteins located in the outer parts of the kernels; 2:
metabolic proteins, e.g. enzymes and enzyme inhibitors,
present mainly in the aleurone layer and embryo, and 3: storage
proteins occurring exclusively in the starchy endosperm. The
proteins of the latter type make up about 70- 80 % of the total grain
protein ; they are unique to cereals, and their main function is to
provide the developing embryo with nitrogen and amino acids.
Traditionally,
storage protein have
been grouped into two fractions, the prolamines, soluble in
aqueous alcohols and the glutelins insoluble in aqueous
alcohols. In this article, the term, ”prolamines” is not used
for both alcohol-soluble and insoluble storage proteins as proposed
by Shewry et al., but in the classical definition: prolamins
are cereal endosperm proteins soluble in aqueous alcohols without
reduction of disulphide bonds. While the prolamins occur in
grains and flour predominantly as monomers, the glutelins
are linked by disulphide bonds and are present in an aggregated
state with molecular weights up to millions.
2. Characterization of prolamin fractions
Herbert Wieser.
Prolamins in Cereals. Deutsche Forschungsanstalt für
Lebensmittelchemie, Germany.
The prolamin
fractions of the various cereals have been given trivial
names; gliadin (wheat), secalin (rye), hordein
(barley), avenin (oats), zein ( maize), kafirin
(sorghum, millet) and oryzin ( rice. The prolamin content on
cereal flours varies considerably and depends on species, variety and
growing conditions. On an average, wheat has the highest content of
prolamin ( 3-6 g/100 g flour) followed by maize, whereas rice is
almost free of prolamins.
The name ”prolamins”
reflects the characteristics of amino acid compositions: high
contents of proline (Pro, P) and glutamine (Gln, Q),
which is particularly true for coeliac toxic gliadin, secalin and
hordein (Table 1).
Prolamins of rice, millet, sorghum and maize are
lower in glutamine (Q) and proline (P), but rich in leucine (L) and
alanine (A); avenin of oats is in medium position.
Altogether, the
proportions of the major amino acids, in particular of glutamine (Q)
and proline (P), in prolamins reflect very well their coeliac
toxicity.
Features common to all prolamins are low contents of the
essential amino acids methionine (M), lysine (K) and tryptophan (W).
For this reason, the biological value of prolamins is rather low, and
from nutritional point of view, a gluten-free diet is not
disadvantageous for consumers.
The range of molecualr masses shown
in table 1 indicates that the prolamins of wheat, rye and barley
differ from other prolamins by significantly higher values.
Partial aminoacid
composition (mol-%)
Amino acid name |
Gliadin | Secalin | Hordein | Avenin | Oryzin | Kafirin | Zein | |
Gln (Q) | 37 | 35 | 35 | 34 | 20 | 22 | 19 | |
Pro (P) | 17 | 18 | 23 | 10 | 5 | 8 | 10 | |
Leu (L) | 7 | 6 | 6 | 11 | 12 | 13 | 19 | |
Ala (A) | 3 | 3 | 2 | 6 | 9 | 14 | 14 | |
Met (M) | 1 | 1 | 1 | 2 | 1 | 2 | 1 | |
Lys (K) | 1 | 1 | 1 | 1 | 1 | 0 | 0 | |
Trp (W) | 0 | 0 | 1 | 0 | 1 | 2 | 0 |
Range of
molecular masses
Gliadin 32 000- 74
000
Secalin 40 000- 53
000
Hordein 35 000 -72
000
Avenin 20 000 - 30
000
Oryzin 11 000 - 23
000
Kafirin 20 000 - 24
000
Zein 19 000 - 26
000.
3. Classification of prolamin components
Herbert Wieser.
Prolamins in Cereals. Deutsche Forschungsanstalt für
Lebensmittelchemie, Germany.
The prolamin
fraction consist of numerous, in part closely related proteins.
According to their amino acid sequences, amino acid compositions and
molecular masses, they can be classified into different types.
Gliadin,
secalin and hordein have two common types: the
omega-type ( kreikk. ω):
ω -gliadin,
ω-secalin and
ω-
hordein) and the
gamma-type
(kreikk. γ) (γ-gliadins,
γ-secalins and γ-hordein); gliadin additionally contains alfa-type
(kreikk. α) (
α-gliadins).
Omega
(ω)
-Type
prolamins (omega-type)
have high contents of glutamine ( Q, Gln) 48 mol-%), prolamine (P,
Pro) about 25 mol-% and phenylalanine (F, Phe) ( about 8 mol-%),
which together accounts for about 80 % of the total composition
Their molecular masses are in a range from 53 000- 64 000. The
complete amino acid sequences
of these proteins have not yet (1998) been described, with the
exception of a C-hordein, the corresponding gene of which has been
proposed to be silent, but some information on partial sequencess
does exists.
Omega
(ω)-prolamins
consist almost
entirely of repetitive sequences
with only short, non-repetitive N- and C-terminal sequences. The most
dominant repeat appears to be QQPQQPFP
with
numerous modifications of single residues.
Gamma (γ)-
type prolamins of
wheat, rye and barley have molecular masses of about 30 000 and are
homologous to a high degree. Their primary structures are divided
into two completely
different domains.
Their primary structures are divided into two completely different
domains.
The N-terminal domain
( Division I about 140 amino acid residues) has short N-terminal
sequences which are non-repetitive. Then, repetitive sequences
follow; they have motifs similar to those of omega(ω)-gliadins
and are rich in glutamine (Q), proline(P) and phenylalanine (F). (
Table 2).
The C-terminal domain
(divisions III-V, about 160 amino acid residues) possesses a more
usual amino acid composition with less glutamine (Q) and proline(P),
but more charged residues: glutamic acid ( Glu, E), lysine (Lys, K),
arginine (Arg, R) and hydrophobic residues: leucine (Leu,
L), isoleucine (Ile, I), valine ( Val, V). In this domain, cysteine
(Cys, C) residues are also present, forming intramolecular disulphide
bonds (-s-s-). Partially, the sequences show homology with seed
proteins of other plants, e.g. rape. castor
bean.
Alfa( α)
-type gliadins are
unique to the wheat.
Typically these proteins have an
N-terminal
domain
with two different sequence divisions: the N-terminal
division I is
partially non-repetitive (about 32 residues), partially repetitive,
consisting of motifs like QPQPFPPQQPYP,
which are mostly repeated five times. Furthermore, one or two
poly-Gln-sequences (Poly-Q-sequences) (division
II with maximal 18
residues of Gln, (Q) are present. The amino acid composition (Table
2) is similar to that of the gamma (γ)-type,
but with lower proline (P) and higher tyrosine (Y) contents.
The C-terminal domain
of the alfa(α)-type
is homologous in divisions III and V with the (γ)-type,
and contain three intramolecular disulphide bonds (-s-s-).
Avenins,
the prolamins of oats, are homologous with the alfa (α)-
and gamma(γ)-type
prolamins within division III and V of the C-terminal
domain. (Figure1).
Eight cysteine residues (Cys) are present in these divisions, all
forming intramolecular disulphide bonds. Unique to avenins are the
repetitive sequences in divisions IV with repetitive motifs like
QQQVFQPL
or QQQFFQPQM,
which are repeated four times and frequently modified.
The N-terminal domain
is characterised by non-repetitive sequences ( about 16 residues) and
by short repetitive sequences consisting of three repeats of the
motif QQQQPFV
or QQQQMLL.
The primary structures of the
non-toxic prolamins
oryzin, kafirin and zein
are, as far as is known, completely different from those of toxic
prolamins.
Altogether, the N-terminal
domains and- in
particular, their
repetitive sequences
are unique to toxic
prolamins
and mainly characterised by high contents of glutamine (Q),
proline(P) and aromatic amino acids ( F,Y,W) (Table 2). Their
secondary stricture is characterized by the frequent occurrence of
beta-turn conformations. Most in -vivo and in-vitro testing of
prolamin (gliadin) peptides demonstrated that regions
of the N-terminal domains
are involved in activating coeliac disease.
(eräs löytämäni moderni linkki:
http://www.mdpi.com/2072-6643/8/10/644/htm)
N- terminal |
IV | V | C- terminal |
4. Relation between prolamins and glutelins
Glutelins are
the second major protein fractions in
cereal endosperm. They comprise aggregated proteins linked by
disulphide bonds (-s-s-). After reduction of disulphide bonds, the
resulting subunits are as soluble in aqueous alcohol as prolamins.
Glutelin subunits of
wheat, rye and barley can be classified into high- molecule-weight
(HMW) and low-molecule-weight(LMW) subunits.
The HMW subunits
of three cereals are homologous to a high degree. They have
molecular masses in a range of 95 000- 136 000 (determined by
SDS-PAGE) and contain three different domains: a non-repetitive
N-terminal domain with about 100 residues, a central
repetitive domain with about 400-700 residues and a
non-repetitive C-terminal domain with about 40 residues.
Both N-terminal and
C-terminal have relatively well-balanced amino-acid compositions with
most or all of the cysteine residues.
The central
domain is rich in glutamine (Q), glycine (G) and proline (P) and
contains repetitive hexapeptides like QQPGQG as a backbone,
which are repeated about 50 to 70 times and frequently modified and
interspersed by motifs like YYPTSP an QPG. A remarkable
sequence homology to prolamins cannot be detected.
In contrast, LMW
subunits of glutelins are partially or highly homologous to the
corresponding prolamin.
LMW subunits of
glutenin ( glutelin of wheat) ar homologous to alfa-and
gamma-type gliadin within division III and V of the C-terminal
domain. ( Figure 1). Division IV is less homologous, elongated
about 20 residues, and contains one cysteine residue, which forms an
intermolecular disulphide bond with other gluten proteins.
The N-terminal
domain (division I) differs significantly from those of alfa- and
gamma-type prolamins and is characterised by short non-repetitive and
long repetitive sequences. The typical repeat motifs contain a series
of glutamines (Q) (two to six residues) followed by units
such as PPFS. A small portion of omega-, alfa- and gamma-type
gliadins is also present in the glutelin fraction. By substitution
of a single residue by cysteine, they have an odd number of cysteines
and are covalently bound to the glutenin aggregate; consequently,
they are not extractable with aqueous alcohols. This could be the
reason why glutenin has been described as weakly toxic.
LMW subunits of
rye glutelin comprise a group of proteins with a molecular mass
of about 75 000 and are named 75 K gamma-secalin, because they
are closely related to the corresponding gamam-type prolamins (40
K-gamma (γ)-secalin). It
has been proposed that 75 K γ-secalins
were formed from 40 K
(γ)-secalins
by elongation of the glutamine (Q)- and proline (P)-rich repetetive
sequences and by insertion of at least one cysteine residue.
LMW
subunits of barley glutelin
(B-hordeins)
have C-terminal domains highly homologous with those of LMW subunits
of wheat. The N-terminal domain consists exclusively of repetetive
sequences related to those of gamma(γ)-hordeins.
Summarising,
one portion of the
glutelin subunits , namely the HMW subunits, are totally different
from prolamins, whereas the other portion, the LMW subunits, are
closely related to corresponding prolamins in the case of rye and
abrley. The LMW subunits of wheat, however, have respective sequences
distinctly different from those of the gliadins.
(Tabel
1)
Taulukko
2 ei ole kirjoitettu näkyviin.
Kuva
1 ei ole kirjoitettu näkyviin.
Yllä
oleva tekemäni kaava vain selventänee N- ja C- terminaalin ja niiden divisioiden jaon
periaatteen.
Mitä tiedetään nykyään viljan toksisista prolamiineista ja gluteliineista?
OHRA päivän aiheena. (Barley) . Ohran prolamiini on hordeiini. Ohralla on myös gluteliini.
Miksi aloitan tänään ohrasta, itse asiassa ohran jyvästä . Olipa kerran... kuten hyvän ajan sadut alkavat- olipa kerran taas lääke-esittelijän käynti tulossa terveyskeskukseen, jossa olin töissä. Kaikki periferian lääkärit odottivat kuin keidasta lääke-esittelijöiden käyntejä, sillä lääkeinformaation ohella saimme usein aterian tai kakkukahvit. Tällä kertaa oli herkullista salaattia ja siinä oli pieniä riisinjyviä joukossa. Salaatti tuli nautittua sivumennen lääkeinformaatiota kuunnellessa. - Mutta salaateissa piilevät jyvät eivät olleetkaan riisiä, vaan OHRAA. En tuntenut itse asiassa ohran jyvää kovin tarkasti, sillä se näytti aivan kuin kuorimattoman riisin keitetyltä jyvältä. .. Siihen satumainen satu loppuikin ja jonkin viikon ajan kärsin vaikeasta suolistoreaktiosta. sillä jo lapsuudesta asti minulla on ollut ohra- aversio, joten ohraa en edes pitänyt ongelmana, koska en ollut sitä yleensä syönyt aversion takia. Osasin jotenkin varoa ohraa vielä enemmän kuin vehnää. Sen takia jollain tavalla tieto ohrasta nyt kiinnostaa, mutta siitä on vaikea saada tietoa. Sitä ei käsitellä erikseen. se on ilmeiseti minulle yksilöllisesti ottaen pahempi suoliallergeeni kuin vehnä,. vehnä taas aiheuttaa paljon laajemmin monimuotoisia allergioita ja elimistöreaktioita. MIKÄ on tuo ohran toksinen peptidi?
.....
Sellaisen henkilön joka voi käyttää kotimaisia viljoja, on vaikea saada insiktiä näistä termeistä prolamiinit ja gluteliinit ja gluteeni.
Lisäksi keliakikoiden, joiden tulee käyttää "gluteenittomia tuotteita", on vaikea tehdä arviota siitä, pitääkö välttää kauraa vai ei. He eivät edes voi ottaa kantaa asiaan.
Huomaan että aikoessani kirjoitaa vain ohrasta, en vältä sitä tilannetta, että täytyy kuvata kaikki toksiset viljat ja niiden kyseessä olevat proteiinit.
Ensimmäisenä prolamiinina pystyttiin C-hordeiini ohrasta määrittämään. Jo 1998 aikaan sen rakenne oli selvillä, kun muiden tarkka rakenne oli vielä tuntematon. Niistä tiedettiin kyllä 1998 jo hahmoja ja siitä on hyvä artikkeli symposiumissa 1998.
"Strangest protein"- sanottiin symposiumissa kun kerrottiin gluteenista.
On varmasti aiheellista kirjoittaa englanniksi tietokoneelle symposiumin 1998 perustava informaatio, jotta kaikki "pääsevät kärryille", Asia hämärtyisi vielä enemmän jos kirjoitan käännöksen suomeksi. Symposium oli vain englanniksi.
(Huomaan vain tässä PubMed - artikkelista että nykyisin on onneksi Codexkynnys gluteenille 20 ppm).
Lähde:
Epub 2016 Jun 24. Comparative analysis of prolamin and glutelin fractions from wheat, rye, and barley with five sandwich ELISA test kits.
Abstract
The
safety of gluten-free foods is essential for celiac disease (CD)
patients to prevent serious complications. Enzyme-linked immunosorbent
assays (ELISAs) are recommended for gluten analysis to monitor the
compliance of gluten-free products to the Codex threshold of 20 mg
gluten/kg.
(20 mg/1 000 000 mg , 20 ppm, parts per million)
However, due to the specific features of each gluten ELISA test kit, the results often deviate systematically and largely depend on the characteristics of the antibody. This comprehensive study assessed the specificities and sensitivities of three monoclonal (R5, G12, and Skerritt) and two polyclonal antibodies to the alcohol-soluble prolamin and alcohol-insoluble glutelin fractions of gluten from wheat, rye, and barley, all of which harbor CD-active epitopes.
Reversed-phase high-performance liquid chromatography served as independent reference method to quantify gluten protein concentrations and allow comparisons of different gluten fractions within one kit and between kits.
Wheat prolamins were detected quite accurately by all antibodies, but high variability between antibody specificities and sensitivities was observed for rye and barley prolamins and rye glutelins, and the largest discrepancies were found for wheat and barley glutelins.
The gluten content (sum of prolamins and glutelins) was either overestimated up to six times (rye) or underestimated up to seven times (barley).
Overestimation of gluten contents may unnecessarily limit the availability of gluten-free products, but underestimation represents a serious health risk for CD patients. It is important to consider these differences between antibodies used in kits and consider what each kit is capable of measuring, especially with samples where the source of gluten is unknown.
(20 mg/1 000 000 mg , 20 ppm, parts per million)
However, due to the specific features of each gluten ELISA test kit, the results often deviate systematically and largely depend on the characteristics of the antibody. This comprehensive study assessed the specificities and sensitivities of three monoclonal (R5, G12, and Skerritt) and two polyclonal antibodies to the alcohol-soluble prolamin and alcohol-insoluble glutelin fractions of gluten from wheat, rye, and barley, all of which harbor CD-active epitopes.
Reversed-phase high-performance liquid chromatography served as independent reference method to quantify gluten protein concentrations and allow comparisons of different gluten fractions within one kit and between kits.
Wheat prolamins were detected quite accurately by all antibodies, but high variability between antibody specificities and sensitivities was observed for rye and barley prolamins and rye glutelins, and the largest discrepancies were found for wheat and barley glutelins.
The gluten content (sum of prolamins and glutelins) was either overestimated up to six times (rye) or underestimated up to seven times (barley).
Overestimation of gluten contents may unnecessarily limit the availability of gluten-free products, but underestimation represents a serious health risk for CD patients. It is important to consider these differences between antibodies used in kits and consider what each kit is capable of measuring, especially with samples where the source of gluten is unknown.
KEYWORDS:
Barley; Celiac disease; Enzyme-linked immunosorbent assay (ELISA); Gluten analysis; Rye; Wheat- PMID:
- 27342795
- DOI:
- 10.1007/s00216-016-9721-7
söndag 8 oktober 2017
Nimipäiväateria
Nuorin tyttäreni osti minulle kauniin atsalean 7.10. 2017 ja teki illalliseksi uunilohta, keitettyä riisiä , brokkolia, parsanvarsia, tuoretta paprikaa, majoneesin kera. Kahvin kanssa suklaata.
lisäksi oli leipää josta otan kuvan erikseen.
lisäksi oli leipää josta otan kuvan erikseen.
Prenumerera på:
Inlägg (Atom)